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In the paper a new fuzzy adaptive cancellation control scheme is presented and compared with model-reference 
adaptive control. The basic part of the fuzzy adaptive cancellation controller is the inverse fuzzy model which 
is given in the form of a fuzzy relational matrix. The comparison has been evaluated by implementation in a 
heat exchanger and a real hydraulic pilot plant, which exhibit nonlinearity and time-variance. It is shown that 
in the case of processes which exhibit relatively simple dynamics, and are at the same time nonlinear and time- 
varying, the adaptive fuzzy cancellation controller is superior to the classical model-reference adaptive control. 
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1. INTRODUCTION 

In some industrial control problems, the parameters of the 
controlled process either are poorly known or vary during 
operation. In such cases, the use of an adaptive control 
technique is generally necessary to obtain a high-perform- 
ance control system. Many solutions have been proposed to 
make control systems adaptive. Model-reference adaptive 
systems evolved in the late 1950's (Isermann et al., 1992). 
The main innovation of such systems is the presence of a 
reference model which specifies the desired dynamics of the 
closed-loop system. The reference model can also be 
implicitly included into the closed-loop system by means of 
a cancellation principle. The cancellation principle of 
model-reference control has been used to develop fuzzy 
adaptive systems. 

As with conventional adaptive controllers, adaptive fuzzy 
controllers can also be categorized into direct and indirect 
types. An "indirect" type of adaptive system means that 
adaptation is based on the process model obtained using 
identification. In the case of direct adaptive systems, no 
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model of the process is needed. The first approaches to 
fuzzy adaptive control were of the direct type, proposed by 
Procyk and Mamdani (1979); after that some of the indirect 
type appeared, proposed by Czogala and Pedrycz (1981), 
Moore and Harris (1992), and Graham and Newell (1988, 
1989). 

The indirect type of fuzzy adaptive control is based on 
fuzzy identification, which can be expressed by a rule-type 
model or by a relational matrix model. The proposed 
method of inverse model identification can be applied to 
stable and phase-minimal processes. 

Many practical processes exhibit simple dynamics which 
can be approximately described by a first-order model. 
However, the parameters of the processes can vary sig- 
nificantly and rapidly with time. Such processes will be 
referred to here as mutable processes with single dynamics. 

In the paper, a comparison is made between fuzzy 
adaptive cancellation controllers based on the inverse fuzzy 
relational model, and conventional model-reference adap- 
tive systems. Both adaptive schemes have been tested on 
real mutable processes with single dynamics, i.e. a heat 
exchanger and a hydraulic pilot plant, which exhibit 
nonlinear characteristics and whose parameters vary sig- 
nificantly during operation. This was the main motivation 
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for implementing an adaptive technique by extending some 
well-known concepts from adaptive and fuzzy theory. 
According to this, the algorithm of the fuzzy adaptive 
cancellation controller, based on the recursive fuzzy identi- 
fication of the inverse matrix model, has been developed 
and implemented in real hydraulic and heat-exchanger 
plants. For this purpose, on-line recursive fuzzy identifica- 
tion, represented by means of the fuzzy relational matrix, 
has been developed. The fuzzy relational matrix of the 
observed process is obtained on the basis of the fuzzified 
process input and output variables. 

2. FUZZY CANCELLATION ADAPTIVE 
CONTROLLER 

The general form of the fuzzy cancellation adaptive 
system developed here is presented in Fig. 1. It consists of 
recursive fuzzy identification of the inverse process model 
and the model-reference part, which is given as a filter. The 
fuzzy model of the process is given in the form of an inverse 
process model, i.e. as an input error model. This model is 
used in the fuzzy cancellation controller scheme. In the next 
two subsections, the relational matrix identification and the 
fuzzy cancellation controller will be given. 

2.1. The fuzzy relational matrix model identification 

Fuzzy logic appears to be a very promising approach in 
process automation. Fuzzy modelling or identification has 
become a very important area. To model or identify the 
process means finding a set of fuzzy if-then rules with well- 
defined attributes, that can describe the given I/O behaviour 
of the process. In recent years, many different approaches to 
fuzzy identification have been proposed in the literature 
(e.g. Tong, 1976; Czogala and Pedrycz, 1981; Pedrycz, 
1984; Takagi and Sugeno, 1985; Sugeno and Tanaka, 
1991). 

Mutable processes, even those with single dynamics, 
exhibit behaviour which is very difficult to represent in 
mathematical form. An alternative approach to the model- 
ling of such systems is given by the identification of the 
fuzzy model. Due to the adaptive character of the whole 
system, it is necessary to obtain information about the 
process parameters at each time instant. For real-time 
implementation, time constraints require a compact and fast 
recursive fuzzy identification technique. The relationship 
(mapping) between the fuzzy sets that are defined in the 

domain of model inputs and those defined in the domain of 
model outputs is given in matrix form. 

The fuzzy identification algorithm used in this paper is 
based on the fuzzy relational matrix model with crisp output 
variables given in the literature (Takagi and Sugeno, 1985; 
Sugeno and Tanaka, 1991; Pfeiffer, 1994). 

Suppose the rule-base of a fuzzy system is as follows: 

Ri: IF xl  is  A i a n d  x 2 is B i THEN y= r i (1 )  

i= 1 ..... N (2) 

where x~ and x2 are input variables of the process, y is an 
output variable, Ai, Bi are fuzzy sets characterized by their 
membership functions and ri are the crisp values. Such a 
very simplified fuzzy model can be regarded as a collection 
of several linear models, applied locally in the fuzzy 
regions, defined by the rule premises. The idea behind this 
kind of modelling is close to the well-known concept of 
gain scheduling. 

Rule-premises are formulated as fuzzy AND relations on 
the Cartesian product set X = X  1 X X2, and several rules are 
connected by logical OR. Fuzzification of a crisp value x~ 
produces a column vector 

['Z(XI ) = [ ]'/~A, (X l )  'JJ~A2(XI ) . . . . .  ]..£A,,(Xl)] r ( 3 )  

and similarly for a crisp value x2. The degrees of fulfillment 
of all possible AND combinations of the rule premises are 
calculated and written into matrix S. If the algebraic product 
is used as an AND operator, this matrix can be directly 
obtained by multiplication: 

S ~-- ~.~ 1 @ ]J~ T ~-/,.L 1 •/.L T . ( 4 )  

The dimension of matrix S(m × n), which actually repre- 
sents the structure of the model, depends on the dimensions 
of the input fuzzy sets/x~(rn × 1) and Ix2(n × 1). 

In order to apply a standard least-squares method to 
estimate the parameters r~j, the vectors s and r are formed 
from S and R respectively: 

S = (S I ISI2""SIn'"Sm iSm2 "''Stun ) T 

r=(r i l r12 . . . r l , . . . rmjrmy. . r , , , , )  r. (5) 
A crisp output value y is computed by a simplified algorithm 
for singletons as a weighted mean value (Center of 
Singeltons): 

Y 
H Inverse 

Filter fuzzy model 

I 
] I n v e r s e ]  

fuzzy 
] lidentificationl [ 

~ - ~  Process ~ 

Fig. 1. The general scheme of the fuzzy cancellation adaptive system. 
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i=1 j=l 
Y= ~ s o '  

/=1 j = l  

sij=n~ln (~-~Ai(Xl),~Bj(X2) ). 

Using these vectors, (6) is rewritten: 

(6) 

(7) 

sT.r 
y= sr.i (8) 

where y(k)  is the current value of the process output, st(k) 
is the normalised fuzzy data vector, f(k) is the current value 
of the estimated fuzzy relational vector, and A is the 
forgetting factor. The proper value of the forgetting factor is 
chosen between 0.95 and 0.98, as proposed by lsermann et 
al. (1992). Optimizing the loss function (12) the recursive 
fuzzy identification with exponential weighting is obtained 
in the following form 

f ( k  + 1) =~(k) + K(k)(y(k + 1) - s ~(k)~(k)) 

where I defines the vector of ones of the same dimension 
(n.m × 1) as s and r. The elements r e are estimated on the 
basis of observations obtained at equidistant time intervals 
by measuring the process input and output. A system of 
linear equations is constructed from the upper equations for 
the time intervals t=t l ,  t=t2 . . . . .  t=tN, where N represents 
the number of samples for the I/O data, which are given at 
equidistant time intervals: 

s r(h)~ 

sT(t")] .r= 

sT(/~)J 

-ST(tl)-ly(ll) 

s~(tg.[y(t9 

Sr(tN)'ly(tN) 

(9) 

The system is of the form: 

K(k) = P(k)s.(k + l )[a + s ~r(k + l)P(k)s.(k)l -~ 

1 
P(k+ 1)= ] [ I -  K(k)sr(k+ 1)]P(k). 

When there is no a pr ior i  information on the initial values 
of the estimated parameters, the initial value of the matrix 
P(0) has to be chosen sufficiently large, and the initial 
values of the estimated fuzzy relational vector parameters 
are set to zero: 

p(0)= ~I, a>> 1, (13) 

f(0)=0. (14) 
gt-r= 1"2 (10) 

with a known nonsquare matrix ~ and a known vector/2 
The solution of this overdetermined system is obtained by 
taking the pseudo-inverse as an optimal solution of vector r 
in a least-squares sense: 

r=(  ~Itr ~ - ' tltr ff'~ (11) 

where gt stands for a fuzzified data matrix with dimension 
N × (n.m) and/2 has dimension N × 1. 

In the case of more than two input variables, matrices S 
and R are no longer matrices, but both become a tensor, 
defined in the total product space of the inputs. 

Adaptive systems require recursive fuzzy identification to 
obtain on-line information about the actual behaviour of the 
process, which is necessary to adapt the whole system in a 
desired way. The elements r o are estimated on the basis of 
observations obtained at equidistant time intervals by 
measuring the process input and output. For real-time 
implementation, the process parameters should be esti- 
mated, and the whole algorithm calculated, in the time 
between two samples. This restriction might be a serious 
problem. If the process parameters are time-varying, the last 
sample gives more information on the current behaviour of 
the process than previous samples did, so exponential 
weighting should be used. The method of recursive fuzzy 
identification with exponential weighting is based on the 
loss function 

N 
J(~)= X ,~N-*(y(k) r - , -- s,(k)r(k))-, (12) 

k=l 

The application of recursive fuzzy identification requires 
continuous monitoring and supervision of several parame- 
ters. The identification algorithm may be started in the 
closed loop after specifying free parameters and setting the 
initial conditions for parameter estimation. These problems 
are connected with the start-up procedure and pre-identi- 
fication. Another problem is the persistent excitation in the 
closed loop. All these problems are discussed in the section 
on supervision and coordination. 

2.2.  F u z z y  a d a p t i v e  c a n c e l l a t i o n  contro l l e r  b a s e d  o n  a 
f . z z y  re la t iona l  matrix 

The fuzzy cancellation controller is designed using the 
same considerations as the conventional cancellation con- 
troller--to ensure the desired closed-loop response 
(Isermann et al., 1992). It consists of a cancellation 
(adaptive) part, which is realized as a fuzzy inverse model 
of the process, and a noncancellation (nonadaptive) part, 
which is determined using the reference model in the same 
way as in the case of the conventional cancellation 
controller. The fuzzy cancellation controller is described by 
the following equations: 

Uaux(z) G~(z) 
- - -  (15)  

E(z) l - GIn(z) 

u f (k)=sr(k) ' fc(k)  (16) 

where Gin(Z) represents the desired model of the closed-loop 
system, s, r the fuzzified vector of the u,.x(k) and uaux(k - 1), 
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?c the current estimate of the fuzzy relational vector of the 
inverse process, and e(k) the error between the reference 
signal w(k) and the output signal y(k). U,ux(Z) and E(z) are 
their Z-transforms. The scheme of the fuzzy cancellation 
adaptive system is presented in Fig. 2. It could be concluded 
that the adaptive mechanism is realised through inverse 
process modelling. 

The algorithm of the fuzzy cancellation adaptive con- 
troller exhibits some advantages in comparison with the 
conventional adaptive technique. These advantages are 
based on fuzzy identification, which enables the identifica- 
tion of the nonlinear process dynamics, and also implicitly 
describes the operating point of the process. 

2.3. Supervision and coordination 

The implementation of parameter-adaptive control 
requires an additional supervision and coordination system, 
to eliminate or avoid all expected or unexpected changes in 
the operating conditions of the controlled process in the 
adaptive control loop. Such changes may result in unaccept- 
able or unstable control behaviour of the parameter-adaptive 
controller. Therefore, continuous monitoring and super- 
vision of the parameter-adaptive control-loop functions are 
required. 

Both tasks, supervision and coordination, can be realized 
as a third-level feedback in the adaptive control loop. The 
tasks that are involved in supervision and coordination 
comprise recognition of faulty functions, diagnosis and 
monitoring (Isermann et al., 1992). The main purpose of the 
supervision and coordination level is to eliminate (or at least 
reduce) the causes of faulty functioning of the whole 
adaptive system. No general supervision and coordination 
levels exist, and for each application the realization of on- 
line supervision and coordination is unique and depends on 
the main goal, effort, computation time available, intentions 
and overall supervisory philosophy. 

In the case of fuzzy cancellation adaptive control, the first 
problem arises with setting the initial fuzzy relational vector 
of the inverse model. In this case, the initial fuzzy relational 

vector available for the controller design procedure either 
does not exist, or has poor confidence. In order to avoid 
malfunctioning of the whole adaptive system, a pre- 
identification phase is employed, within the supervision and 
coordination level, to obtain the initial fuzzy relational 
vector of the inverse model. Pre-identification in the case of 
the fuzzy adaptive control is calculated in a closed loop, 
using a robust PI controller instead of the fuzzy cancellation 
controller. When the identified fuzzy process model ade- 
quately matches the dynamic input-output behaviour of the 
real plant, control can be given to the fuzzy cancellation 
controller. The switch is made when the system fulfills the 
following equation: 

e,,(k)<-O.O5u(k). (17) 

The input error eu(k) is defined as the difference between the 
input process signal u(k) and the estimated input process 
signal fi(k), calculated on the basis of the inverse fuzzy 
process model 

e.(k) = lu(k) - ti(k)l. (18) 

The main problem of closed-loop identification in the case 
of fuzzy adaptive cancellation control is that it cannot be 
guaranteed that the resulting process input signal is 
persistently exciting, for the process model parameter 
estimation to match process behaviour accurately enough. 
Therefore, no useful information about process dynamics 
can be gained from the measured process input and output 
signal values. This results in linearly dependent rows of the 
information matrix P. In this case, the identification problem 
becomes insoluble. 

Implementing the recursive version of least squares or 
extended least squares, the problem of nonpersistent 
excitation of the process is indicated by an increasing 
variance of all parameter estimates. This results in wrong 
values of parameter estimates and information matrix trace 
divergence. The problem is known as "bursting". A simple 

i 
5 Fuzzy L. 

Identification I"" 
Fuzzy Control ler  I t  | 

r ...................................................... ; ............ i I - 

) " - - - ' - - ~ ~ / /  I - - - 'qu  (k-1)l R ~ ~ Plant I 

L .................. J . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  A [ -p'- '  

P- Controller J 

y(k) 

Fig. 2. The scheme of the fuzzy cancellation adaptive system. 



IGOR ~KRJANC et al.: REAL-TIME FUZZY ADAPTIVE CONTROL 57 

action to avoid influence on the parameter estimates is an 
automatic switch-off of the identification method according 
to the eigenvalues of matrix P, or the trace of the same 
matrix. This principle is also used in the case of the fuzzy 
relational matrix identification. 

A very important part of supervision in the case of fuzzy 
cancellation adaptive control is the P controller which 
controls the difference between the variable on the inverse 
model input Ua, x(k) and process output y(k) .  In the ideal 
case, both variables should be equal. When the controller 
action of an implemented fuzzy cancellation controller is 
too weak or too strong (poor estimation of the process 
parameters), an additional supervision controller is needed. 
The input of the P-supervisory controller is the difference 
between the variables y ( k )  and U~,x(k), and the output is up(k) 
which forms (together with the output from the fuzzy 
cancellation controller uf(k))  the control signal u(k)  of the 
process. Figure 2 shows the fuzzy cancellation controller 
with the P-supervisory controller in the closed loop. 

3. ADAPTIVE C O N T R O L  OF THE HEAT- 
E X C H A N G E R  P I L O T  PLANT 

The adaptive approach discussed above has been imple- 
mented in a real temperature-control plant, which consists 
of a plate heat exchanger, through which hot water from an 
electrically heated reservoir is continuously circulated in a 
counter-current flow to cold process fluid (cold water). The 
thermocouples are located in the inlet and outlet flows of the 
exchanger; both flow rates can be visually monitored. 
Power to the heater may be controlled by time-proportion- 
ing control, using the external control loop. The flow of the 
heating fluid can be controlled by the proportional motor- 
driven valve. A schematic diagram of the plant is shown in 
Fig. 3. 

The temperature plant is a process where the variables are 
significantly dependent on the spatial coordinates at a given 

moment in time, so the dynamics of the heart of the 
process--the heat exchanger---could be represented by the 
following set of partial differential equations 

OTl(Z,t) OTl(z , t )  
- -  + v  I - -  =k l [T , ( t )  - Tj(z , t )]  (19) 

c3t c3z 

aT,(t) 
dt  

_ _  = k2[T2(z,t  ) - L(t)] -k2[T,(t ) - Tl(z , t )]  

OT2(z,t) c3T2(z,t) 
v2(t ) - -  = k n [T,(t) - Te(z,t)] 

at az  

where T~(z,t), T2(z,t) and T~(z,t) represent the temperatures 
of the cold water, heating water and the iron wall 
respectively, v~(t) and v2(t) the velocities of the cold and 
heating water, and k~ and k2 constants which include the 
heat-transfer coefficients and the physical dimensions of the 
heat exchanger. 

The solution of the set of (19) would yield the 
mathematical model of the the heat exchanger, with the 
input defined by the current velocity of the heating water 
v2(t) and the output defined as the outlet temperature T~ of 
the cold water. In order to obtain a simple model of the heat 
exchanger, theoretical modelling would be very difficult 
because of the nonlinear character of the third equation in 
the set, (19). Furthermore, the heat exchanger is just one 
part of the plant, so the sensors and the actuators should also 
be modelled. The motor-driven valve exhibits strongly 
nonlinear and time-varying behaviour. 

System modelling based on conservational laws and first 
principles would be a very difficult, expensive and time- 
consuming task. Instead, fuzzy identification of the process 
is used. Although the process is very complex, it could be 
presented as a model with approximately first-order dynam- 
ics with a small time delay, with significantly time-varying 

HEAT E X C ~ E R  

~ FI 
Z V3 

..... I~----"" 

THE r~IVIC36TAT v3 

o u l p u t  

................. ~ ............. t~.~---.- input 
MOTOR DRIVEN VALk/E 

IMP I !1~~~ Ivy2 
h e a t i n g  ,w~ter 

............. c o l d  ,water 

Fig. 3. The heat-exchanger pilot plant. 
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parameters and nonlinearities according to the operating 
point. 

During the experiments, some values of the physical 
parameters (velocity Vl and the temperature T2 at the inlet of 
the exchanger), which are supposed to be constant, were 
changing. These variations have a great influence on the 
gain and on the dominant time constant of the process. The 
period of the first 400 s was used for the pre-identification 
in the closed loop, using the robust PI controller. After- 
wards, the fuzzy adaptive controller was switched on. 

The results of fuzzy adaptive control are shown in Fig. 4, 
where the output y(t) and the reference model output ym(t) 
are presented. 

After 2780 s, a change was made to the valve position in 
the cold-water circuit. The position was changed by 
approximately 25%. After a transient phase, the process 
output followed the reference model properly. 

For an evaluation of the results, the experiment was 
repeated under the same conditions using a conventional 
globally stable model-reference adaptive control scheme 
(Isermann et al., 1992). The output of the closed loop y(t) 
and the reference model output ym(t) are shown in Fig. 5. 

The initial conditions in this case have been set near to 
the assumed values, because otherwise the algorithm 
diverges. 

The model-following is much better in the case of fuzzy 
adaptive control, due to the ability of the fuzzy model to 
cope with the nonlinearities. 

the top of the reservoir and emptied at the bottom of the 
reservoir through a manually adjustable valve. Circulation 
of the liquid is obtained using an electric pump. 

The dynamics of the pilot plant can be described by the 
following differential equation: 

~h) ~t +h=K:(h)C19+Kp(h,p,)p,,(h), (20) 

where -r(h) is the time constant of the process and depends 
on the liquid level h in the reservoir, pv(h) is the valve 
pressure and K.(h) and Kp(h,pv) are constants which depend 
on the process operating point. The operating point can be 
changed by the manually adjustable valve. 

The electric pump operates in the range between 0 and 10 
V, and has a nonlinear, time-variant characteristic. The 
nonlinearity is a dead zone of 3 V, which means that the 
pump starts to operate if the input is greater than 3 V, and a 
curved dependance between the voltage and the flow. The 
characteristic of the pump changes with time, so the 
measured nonlinearity will vary. Thus the controlled process 
is a mutable process. Another nonlinear effect arises when 
the pump input signal becomes greater than 8 V. In this 
range, disturbances in the pump operation accrue, caused by 
air bubbles. The pump characteristic can be symbolically 
described by the following equation: 

CP(k)=f(k,u)(k)). (21) 

4. ADAPTIVE CONTROL OF A HYDRAULIC 
PILOT PLANT 

The fuzzy adaptive cancellation control approach has also 
been implemented in a hydraulic pilot plant. The hydraulic 
pilot plant consists of a reservoir, filled through an inlet at 

The combination of (20) and (21) yields the controlled 
process, with the input defined by the voltage applied to the 
pump u(k) and the output defined as the liquid level h(k). 

During the experiments, the position of the manually 
adjustable valve was changed. This change has a great 
influence on the gain and on the dominant time constant of 
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Fig. 4. The process output and the reference-model signal in the case of fuzzy adaptive control. 
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Fig. 5. The process output and the reference-model signal in the case of the model-reference adaptive control. 

the process, The manually adjustable valve was half-open at 
the beginning. At the time instant t=200 s, the fuzzy 
adaptive controller was switched on. The process character- 
istic was changed as follows: at the time instant t=700 s, the 
valve was opened to the value 5/6, at t= 1300 s the valve 
was closed to 1/2, and at t= 1500 s to 1/6. 

The same experiment has been realized using both 
controllers. In the case of fuzzy adaptive control, huge 
oscillations at the beginning are due to the initially wrong 
settings of  the controller parameters. Also huge over and 
undershoots are observed at t=1500 s, when closing the 
valve to 1/6. After the transient phase, the process output 
more or less follows the model-reference output. The 

discrepancies are due to the approximation of  the process by 
the first-order plant, which is obviously not justified, even in 
a single operating point. The period of  the first 200 s is used 
for pre-identification in the closed loop, and during this 
period the system is controlled using the robust PI 
controller. Figure 6 shows the output process signal y(t), the 
prescribed-model output signal ym(t) and the control signal 
u(k) for the fuzzy adaptive cancellation controller. The 
prescribed model has been chosen equal to the reference 
model of the model-reference adaptive control. 

The oscillations after switching on the fuzzy adaptive 
cancellation controller are smaller than the initial oscilla- 
tions of the model-reference adaptive control. Also, the 

9 
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L____ 
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Fig. 6. The process output, the prescribed model output and the control signal in the case of the fuzzy adaptive control. 
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Fig. 7. The process output, the reference model and the control signal in the case of the model-reference adaptive control. 

oscillations when changing the operating point are smaller, 
due to the supervisory P controller. The model-following is 
better than in the case of the model-reference adaptive 
controller, due to ability of the fuzzy model to describe 
nonlinearities. 

The results for the continuous model-reference adaptive 
control are shown in Fig. 7. This shows the output process 
signal y(t), the reference-model output signal ym(t) and the 
control signal u(k). 

All the experiments were realized using the Simulink 
program package to simulate the dynamic systems. This is 
a part of the Matlab program package, in the Windows 
environment. The communication between program pack- 
age and the Burr-Brown process interface has been also 
realized inside the Simulink package with a Mex file written 
in the C programming language. 

5. CONCLUSION 

In the paper, a fuzzy adaptive cancellation controller is 
presented. The development of a new fuzzy adaptive 
scheme was motivated by the unsatisfactory results obtained 
using conventional model-reference adaptive techniques. 
Regarding the real-time experiments on the temperature and 
hydraulic plants, which exhibit nonlinear and time-varying 
characteristics, it was found that the novel algorithm 
introduces faster convergence and better performance in the 
presence of nonlinearity and unmeasured dynamics, due to 

the improved fuzzy identification method. The proposed 
approach seems to be usable in the case of time-varying or 
nonlinear systems with simple dynamics. In such cases, the 
proposed algorithm gives some advantages in comparison to 
the conventional model-reference adaptive technique, 
resulting in better system performance. 
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